December 24, 2022

Morphological adaptation of P. canaliculata shell to the different ecosystems in Lanao Del Norte, Mindanao, Philippines | IJAAR 2022

Fig. 1. Map of the Philippines. A) Rice field at Brgy. Tenazas, Lala, Lanao del Norte; B) Dam and Stream at Brgy. El Salvador, Lala, Lanao del Norte; and C) Irrigation Canal at Brgy. Balagatasa, Maigo, Lanao del Norte.

Author Name

V. Logronio Ferlyn, and M. Yagos Rosanilio

Journal Name

International Journal of Agronomy and Agricultural Research | IJAAR 

Publisher Name

International Network For Natural Sciences | INNSpub

Abstract

Different physiological, morphological, and behavioral adaptations of Pomacea canaliculata aided them in their survival to different adverse environmental conditions. Furthermore, the said adaptations can be very vital in the control and management strategies that can be employed in the areas where their population posed a threat to food security. The study employed an explorative-investigative study design for the gathering of data. Eight hundred seventy-three Golden Apple Snails from different freshwater ecosystems, namely stream, irrigational canal, and rice field were collected, cleaned, and examined. To elucidate the different adaptations of the GAS to the various ecosystems, their shell characteristics were observed, recorded, and examined. Consequently, this study found out that those shells from snails sampled in streams had bigger length, width, width of the aperture, a higher number of bands, and whorls when compared to those shells from irrigational canals and rice fields. Moreover, there was a negative correlation between pH and dissolved oxygen to the height, width, and width of the aperture. There was also a significant correlation between the temperature and width, weight, and the number of bands. It was concluded that to control and manage the population of the GAS the area should have less palatable food sources and less anthropogenic activities so that environmental parameters like high pH, lower temperature, and higher dissolved oxygen can be achieved. 

 

Introduction

The physiological, morphological, and behavioral adaptation of Pomacea canaliculata to various environmental conditions made them thrive and be one of the major pests in freshwater wetlands particularly affecting ricefields and other economically important agricultural areas. They had been known for their adaptive plasticity (Estebenet & Martin, 2002) and highly generalist and voracious macrophytophagous feeding nature (Morrison, et al., 2016).

Determination of: a) shell length, shell width, and width of the aperture;
 

P. canaliculata, or commonly known as golden apple snail, is one of the freshwater snails that underwent series of adaptations to thrive in any given freshwater environment. Hence, the golden apple snail can tolerate harsh environmental conditions such as low levels of salinity, lower temperature (Seuffert, et al., 2013), low pH levels, metal and pollutant contamination, parasite infestations, period of drought (Silverwood, 2011), and low food availability (Tamburi & Martin, 2016). However, its survival in these adverse environmental conditions is highly dependent on the important physiological, morphological, and behavioral adaptations (Chukwuka, et al., 2014) of these snails to their environment. Furthermore, according to Relyea (2002), as cited by Madjos, et al., in 2015 that P. canaliculata can respond to the changes in the environment by producing alternative phenotypes as an adaptive strategy.

Consequently, there had been different functional parts of the snails that played an important factor in their survival especially in maintaining their homeostasis. One of those parts is the shell. Salient features of the snails’ shells that ensured the snails’ survival against adverse environmental conditions, predator cues, and various anthropogenic-related activities were: shell periostracum, shell chirality, shell color, shell shape, shell size and weight, and operculum shape and weight. 

Determination of number of whorls.

However, these characteristics could also be a potential target for control measures. A better understanding of the important characteristics of the species that helped them survive various environmental stresses should be understood by people implementing management and control programs. Henceforth, this paper was conducted to provide basic information on the adaptation of the snails based on the characteristics of their shells, so that proper management and control measures can be crafted to make them better suited in the area. The paper looked into three different ecosystems which have important economic value where the presence and manifestation of golden apple snails were seen to be of great concern. Get the full articles by following the link Int. J. Agron. Agri. Res.20(1), 24-32, January 2022

 Reference

Boettiger A, Ermentrout B, Oster G. 2009. The neural origins of shell structure and pattern in aquatic molluscs. PNAS 106(16), 6837-6842.

Cazzaniga N. 1987. Pomacea canaliculate (Lamrk, 19801) en Catamarca (Argentina) y un comentario sobre Ampullariacatamarcensis Sowerby, 1874 (Gastopoda, AMpullaridae). Iheringia, Serie Zoologia 66, 43-68.

Chukwuka CO, Ejere VC, Asogwa CN, Nnamonu EI, Okeke OC, Odii EI, Ugwu GC, Okanya LC, Levi CA. 2014. Eco-physiological adaptation of the land snail Achatina achatina (Gastropoda: Pulmonata) in tropical agro-ecosystem. The Journal of Basic and Applied Zoology 67, 48-57

Comfort A. 1950. The Pigmentation of Molluscan Shells. 285-300.

Ermentrout B, Campbell J, Oster G. 1986. A Model for Shell Patterns Based on Neural Activity. The Velger 28(4), 369-388.

Estebenet A, Martin P. 2002. Pomacea canaliculata (Gastropoda: Ampullariidae): Life-history and Traits and their Plasticity. Biocell 26(1), 83-89.

Estebenet A, Martin P. 2003. Shell Interpopulation Variation and its Origin in Pomacea canaliculata (Gastropoda: Ampullariidae) from Southern Pampas, Argentina. J. Moll. Stud 60, 301-310.

Estebenet A, Martin P, Burela S. 2006. Conchological variation in Pomacea canaliculate and other South American Ampullariidae (Caenogastropoda, Architaenioglossa). Biocell 30(2), 329-335.

Fink P, Von Elert E. 2006. Physiological responses to stoichiometric constraints nutrient limitation and compensatory feeding in a freshwater snail. Oikos 115, 484-494.

Galan G, Porquis H, Bulasa M. 2015. Shell band pattern of Golden Apple Snail (Pomacea canaliculate, Lamark) in Selected Aquatic Habitats. International Journal of Environmental Science and Development 6(8), 625-628.

Glass N, Darby P. 2009. The effect of calcium and pH on Florida apple snail, Pomacea paludosa (Gastropoda: Ampullariidae), shell growth and crush weight. Aquatic Ecology 43(4), 1085-1093.

Gould S. 1966. J Paleontol 42, 81-98

Gupta A, Pereira C, Soukup J. 2017. Effects of thermal stress on growth and mortality of juvenile Crepidula fornicate in New England. Marine Physiology and Climate Change 2017, 1-9.

Kalinda C, Chimbari M, Mukaratirwa S. 2017. Effect of temperature on the Bulinus globosus – Schistosoma haematobium system. Infectious Diseases of Poverty 2017(6), 57.

Kemp P, Bertness M. 1984. Snail shape and growth rates: Evidence for plastic shell allometry in Littorina littorea. Proc. Natl. Acad. Sci, USA. 81, 811-813

Madjos G, Anies O. 2016. Morphometrics approaches to studying phenotypic plasticity in Pomacea canaliculate (Golden apple snail). International Journal of Advanced and Applied Sciences 3(4), 50-56.

Madjos G, Demetillo M, Baguio M, Torres M. 2015. Phenotypic variation in populations of Pomacea canaliculata (Golden Apple Snail): a case of agroecotypes?. Advances in Environmental Sciences – International Journal of the Bioflux Society 7(3), 432-441.

Mahilum J, Demayo C. 2014. Sexual Dimorphism on Shell Shape of Pomacea canaliculata Lamark Thriving in Lakes using the Geometric Morphometric Approach. International Journal of Bioscience, Biochemistry, and Bioinformatics 4(4), 284-289

Marshall D, Santos J, Leung K, Chak W. 2008. Correlations between gastropod shell dissolution and water chemical properties in a tropical estuary. Marine Environmental Research 66(4), 422.

Memon U, Balich W, Tunio G, Burdi G, Korai Al, Pirzada A. 2011. Food, feeding, and growth of Golden Apple Snail Pomacea canaliculate, Lamark (Gastropoda: Ampullariidae). Sindh University Research Journal (Science Series) 43(1), 25-28.

Minton R, Lewis E, Netherland B, Hayes D. 2008. Large Differences over Small Distances: Plasticity in the Shells of Elimia potosiensis (Gastropoda: Pleuroceridae). International Journal of Biology 3(1), 23-32c.

Morrison W, Hay Mark. 2016. Feeding and growth of native and exotic apple snails (Ampullariidae): Invasive eat more and grow more. Accessed at http://www.lib.noaa.gov/about/news /Morrison_06302010.pdf

Orr J, Fabry V, Aumont O, Bopp L, Doney S, Feely R, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key R, Linsay K, Maier-Reimer E, Matear R, Monfray F, Mouchet A, Najjar R, Plattenr G, Rodgers K, Sabine C, Sarmiento J, Schlietzer R, Slater R, Totterdel I, Weirig M, Yamanaka Y, Yool A. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681-686.

Samsi A, Karim S. 2019. The relationship between the length and weight of snail Nerita lineata Gmelin1791 on environmental factors in the mangrove ecosystem. Journal of Physics: Conference Series 1341(2019).

Seuffert M, Martin P. 2013. Juvenile growth and survival of the apple snail Pomacea canaliculata (Casnogastropoda: Ampullariidae) reared at different constant temperatures. SpringerPlus. 2-312

Silverwood K. 2011. Apple Snail Risk Analysis for Arizona. Accessed at http://www.azgfd.gov/h_f/ documents/AIS-AppleSnailRisk.pdf

Sokolova I, Berger V. 2000. Physiological variation related to shell color polymorphism in White Sea Littorina saxatillis. Journal of Experimental Marine Biology and Ecology 245(2000), 1-23

Tamburi N, Martin P. 2016. Effects of absolute fasting on reproduction and survival of the invasive apple snail Pomacea canaliculata in its native range. Current Zoology 62(4), 369-375.

Tamburi N, Seuffert M, Martin P. 2018. Temperature-induced plasticity in morphology and relative shell weight in the invasive apple snail Pomacea canaliculate. Journal of Thermal Biology 74(4).

Yam R, Fan Y, Wang T. 2016. Importance of Macrophyte Quality in Determining Life-History Traits of the Apple Snails Pomacea canaliculata: Implications for Bottom-up Management of an Invasive Herbivorous Pest in Constructed Wetlands. International Journal of Environmental Research and Public Health 13, 248.

 

 

December 15, 2022

The amphibian’s fauna of a West African forest relict near a hydroelectric Dam | JBES 2022

The amphibian’s fauna of a West African forest relict near a hydroelectric Dam (Southwest of Côte d’Ivoire)  N’guessan Emmanuel Assemian, Konan Hervé Oussou, Blaise Kadjo, Atta Léonard Kouadio

Authors

  • N’guessan Emmanuel Assemian 

Jean Lorougnon Guédé University, Laboratory of Biology and Tropical Ecology,
UFR Environnement, Daloa, Côte d’ivoire

  •  Konan Hervé Oussou

Jean Lorougnon Guédé University, Laboratory of Biology and Tropical Ecology,
UFR Environnement, Daloa, Côte d’ivoire

  •  Blaise Kadjo

 Felix Houphouet-Boigny University, UFR Biosciences, Abidjan, Côte d’ivoire

  • Atta Léonard Kouadio

Jean Lorougnon Guédé University, Laboratory of Biology and Tropical Ecology, UFR Environnement, Daloa, Côte d’ivoire

Journal Name

Publisher Name

International Network For Natural Sciences | INNSpub

Abstract

This study reports the amphibian’s fauna sampled from the Biodiversity Conservation Area of the hydroelectric dam of Soubré city (southwestern Côte d’Ivoire). This study aims to provide a better understanding of the diversity of amphibians in this relict forest of 200 ha, in order to assess the ecological health of this ecosystem for conservation and sustainable management perspectives. During dry season (from 26 February to 4 March 2018) and rainy season (from 17 to 23 June 2018), we recorded 14 species of anurans grouped into eight genera and six families. The study sites comprise an amphibian fauna consisting mainly of savannah specialists and degraded forest (64.28% of total species richness). Based on the IUCN Red List, all species recorded are of least concern. Also, these species are well distributed in the different regions of Côte d’Ivoire and Africa. Thus, it is necessary to monitor the ecology of the species and to protect subsequently the different habitats of this area. Check out more by following the link The amphibian’s fauna of a West African forest relict near a hydroelectric Dam (Southwest of Côte d’Ivoire)

JBES Vol 21 N5

 Introduction

Tropical forests cover about 6% of the world's land area (Myers, 1989). From West Africa to Central Africa, there are two blocks (Upper Guinea and Lower Guinea) containing some of the greatest biological diversity in the world (Myers et al., 2000). Since the beginning of the 19th century, these tropical forests have been experiencing a gradual decrease in their area. This dynamic is, in general, linked to the combined impacts of climate variability, the growth of African populations and changes in social habits (Pain-Orcet et al., 1999). However, several authors have demonstrated a close relationship between the composition of faunal communities and habitat diversity (Lips et al., 2003). Others have also shown that forest fragmentation could cause local extinction of plant species (Hill and Curran 2003). Similar observations have been made for animal communities, including birds, mammals (Beier et al., 2002), reptiles and amphibians (Hillers et al., 2008). Urbanization, logging, agriculture, and the energy sector (construction of high-voltage power lines and hydroelectric dams) are leading to reductions or fragmentation of certain habitat types and concomitant changes in biodiversity (Kirk, 2003). 

The rate of species extinction is rampant, leading the scientific community to believe that a sixth mass extinction is setting in, given the loss of species over the past centuries and millennia (Bellard et al., 2012). The dependence of many amphibian species on both aquatic and terrestrial habitats places them in a state of permanent threat as deterioration in the quality of both terrestrial and aquatic environments could disrupt their life cycles and affect their populations (Dunson et al., 1992). Therefore, they provide more information on environmental disturbances affecting different ecosystems (Blaustein et al., 2003). Thus, amphibians are excellent biological indicators of tropical ecosystems (Channing, 2001). In Côte d'Ivoire, the creation of hydroelectric dams dates back to the 1950s (Assemian et al. 2006). On the one hand, it was a response to the country's search for energy independence in favor of hydroelectricity and, on the other, to a political will to reduce interregional disparities (Tia & Touré, 2016). It is in this context that, in order to mitigate the deficit in energy coverage, the Ivorian State decided to build a hydroelectric dam on the Sassandra River, located in the Soubré city. This infrastructure contributes to general development and human advancement (Skinner et al., 2009). 

However, the construction of this structure is a source of many problems, including massive and forced displacement of populations (Pottinger, 2012) and the destruction of the natural environment with all its components. Aware of the consequences on the natural environment, the Ivorian state in an effort to reconcile environment and development, has included in its development program, the realization of an environmental and social impact assessment (ESIA) prior to the implementation of any project likely to have an impact on the environment (Kadjo et al., 2017). The policy of erecting an area for biodiversity conservation within the operating space of an industrial or mining company is recent. 

There is the example of Agbaou which dates from 2017. For the hydroelectric dam development of the Soubré, the ESIA allowed the development of an Environmental and Social Management Plan (ESMP) In order to compensate for habitat losses, the ESMP proposed a restoration and rehabilitation zone immediately downstream of the dam called the Biodiversity Conservation Area (BCA). The BCA would be a sanctuary or refuge area for terrestrial wildlife in general and amphibians in particular. Thematic studies started in June 2017, these have allowed to make an inventory of the vertebrate fauna of this area. It is in this perspective a study on the spatial distribution of the amphibian’s population in this area has been conducted. Several research works on amphibians have been carried out in different protected area of Côte d'Ivoire, namely those of Rödel & Branch (2002), 

Rödel & Ernst (2004) in Taï National Park (the West region), those of Assemian et al. (2015), Kouamé et al. (2018) in Banco National Park (the Southeast region) and Kpan et al.(2014) in Tanoé-Ehy Swamp Forests. This study aims to provide a better understanding and for documenting the amphibian’s diversity of an unprotected forest in order to diagnose the health of this ecosystem for conservation and sustainable management perspectives. 

Reference

Adeba PJ, Kouassi P, Rödel MO. 2010. Anuran amphibians in a rapidly changing environment- revisiting Lamto, Côte d’Ivoire, 40 years after the first herpetofaunal investigations. African Journal of Herpetology 59, 1-18.

Ahon DB, Camara MM, Assemian NE, Kadjo B, Zean GM. 2020. Avifaunal diversity of the biodiversity conservation area of the Soubré hydroelectric dam (South-West Côte d’Ivoire). Journal of Global Biosciences 9(5), 7320-7338.

Anonymous. 2016. Projet de renaissance des infrastructures et de gestion urbaine en Côte d’ivoire, rapport final d’étude, Côte d’ivoire 196 p.

Assemian NE, Adépo-Gourène BA, Ouattara A, Agnèse JF, Gourène G. 2006. Différenciation morphologique et génétique de deux poissons électriques africains Marcusenius ussheri et M. furcidens (Osteoglossomorpha, Mormyridae). Sciences & Nature 3(2), 177-191.

Assemian NE, Kouamé NG, Tohé B, Gourène G, Rödel MO. 2015. Spatial Distribution Patterns of an Amphibian Community in a Threatened West Africa Rainforest (Ivory Coast). International Journal of Science and Research 4(4), 316-325.

Assemian NE. 2009. Systématique, diversité et dynamique spatio-temporelle du peuplement d’amphibiens d’une aire protégée Ouest africaine (Parc National du Banco ; Côte d’Ivoire). Thèse de Doctorat, option : Écologie et Aménagement des Écosystèmes Aquatiques, UFR des Sciences et Gestion de l’Environnement, Université d’Abobo Adjamé (Abidjan, Côte d’Ivoire) 183 p.

Beier P, van Drielen M, Kankam BO. 2002. Avifaunal collapse in West African forest fragments. Conservation Biology 16, 1097-1111.

Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. 2012. Impacts of climate change on the future of biodiversity- Ecology letters 15(4), 365-377.

Blaustein AR, Romansic JM, Kiesecker JM, Hatch AC. 2003. Ultraviolet radiation, toxic chemicals and amphibian population declines. Diversity and Distributions 9, 123-140.

Channing A. 2001. Amphibians of Central and Southern Africa. Cornell University press, Ithaca, New York 470 p.

Chao A. 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783-791.

Colwell RK. 2013. Statistical Estimation of Species Richness and Shared Species from Samples. Version 9. User’s Guide and Application. Available: http://purl.oclc.org/estimates

Dunson WA, Wyman RL, Corbett ES. 1992. A symposium on amphibian declines and habitat acidification. Journal of Herpetology 26, 349-252

Frost DR. 2021. Amphibian species of the World: an Online Reference. Version 6.1 (accessed: 30 Juin 2022). Electronic Database accessible at https:// amphibiansoftheworld.amnh.org/index.php

Girard G, Sircoulon J, Touchebeuf P. 1971. Aperçu sur les régimes hydrologiques. Le milieu naturel de la Côte d’Ivoire, Mémoires ORSTOM 50, 113-155.

Gronner J. 1982. Les Bété de Soubré et le Développement Régional (Sud-ouest de la Côte d’Ivoire). Thèse de doctorat, école des hautes études en sciences sociales, Paris 574 p.

Guillaumet JL, Adjanohoun E. 1971. La végétation In: Le milieu naturel de la Côte d’Ivoire, PP 161262. Mémoire ORSTOM, Paris 391 p.

Hammer Ø, Harper DAT, Ryan PD. 2001. Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(4), 1-9.

Heltshe J, Forrester NE. 1983. Estimating species richness using the jackknife procedure. Biometrics, 39, 1-11.

Heyer WR, Donnelly MA, McDiarmid RW, Hayek LAC, Foster MS. 1994. Measuring and Monitoring Biological Diversity. Standard Methods for Amphibians. Smithsonian Institution Press, Washington, DC, USA and London, United Kingdom 364 p.

Hill JL, Curran PJ. 2003. Area, shape and isolation of tropical forest fragments: effects on tree species diversity and implications for conservation. Journal of Biogeography 30, 1391-1403.

Hillers A, Veith M, Rödel MO. 2008. Effects of forest fragmentation and habitat degradation on West African leaf-litter frogs. Conservation Biology 22, 762-772.

Kadjo B, Bitty A, Ahon DB, Assemian NE. 2017. Etudes thématiques de la faune dans la zone de conservation de la biodiversité du barrage hydroélectrique de Soubré : plan de gestion environnemental et social pour la faune. Rapport d’étude, Abidjan 45 p.

Kirk DA. 2003. General view of the situation and the conservation of the birds of prey in Canada. Tendencies at the birds 9, 1-9

Kouamé NG, Konan JCBYN, Adepo-Gourène AB, Gourène G, Rödel MO. 2014. The amphibians of Yakassé-Mé village forest, a threatened rainforest of southeastern Ivory Coast. Herpetology Notes 7, 657-665.

Kouamé NG, Ofori-Boateng C, Adum GB, Gourène G, Rödel MO. 2015. The anuran fauna of a West African urban area. Amphibian and Reptile Conservation 9, 1-14.

Kouamé NG, Ofori-Boateng C, Adum GB, Gourène G, Rödel MO. 2015. The anuran fauna of a West African urban area. Amphibian & Reptile Conservation 9(2), 1-14 (e106).

Kouamé NG, Tohé B, Assemian NE, Gourène G, Rödel MO. 2018. Spatio-temporal distribution of five species of West African leaf-litter frogs, Salamandra 54(1), 21-29.

Kpan TF, Adeba PJ, Kouamé NG, Koné I, Kouassi KP, Rödel MO. 2014. The anuran fauna of a Volunteer Nature Reserve: the Tanoé-Ehy Swamp Forests, southeastern Ivory Coast, West Africa. Zoosystematics and Evolution 90, 261-270.

Lamotte M, Xavier F. 1972. Recherche sur le développement embryonnaire de Nectophrynoides occidentalis Angel, Amphibien Anoure vivipare. Annale d’Embryologie et de Morphologie 5, 315-340.

Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858.

Myers N. 1989. Deforestation rates in tropical forests and their climatic implications. Friends of the earth, London, Annual review, 157 p.

Oussou KH, Assemian NE, Kouadio AL, Tiédoué MR, Rödel MO. 2022. The anuran fauna in a protected West African rainforest. Amphibian & Reptile Conservation 16(1), 1-13.

Pain-Orcet M, Lo Seen D, Fauvet N, Trebuchon JF, Dipapoundji B. 1999. Les cartes, la télédétection et les SIG, des outils pour la gestion et l’aménagement des forêts tropicales d’Afrique Centrale. CIRAD-Forêt, Montpellier, France 27 p.

Perret JL. 1979. Remarques et mise au point sur quelques espèces de Ptychadena (Amphibia, Ranidae). Extrait du Bulletin de la Société Neuchateloise des Sciences Naturelles, Tome 102, 5-21.

Pielou EC. 1969. An introduction to mathematical ecology. Wiley Interscience, New York 285 p.

Pottinger L. 2012. International Rivers, World Rivers Review 27, Berkeley, USA. www.internationalrivers.org. (Accessed: 20 Juin 2021).

Rödel MO, Bangoura MA. 2004. A conservation assessment of amphibians in the Forêt Classée du Pic de Fon, Simandou Range, south-eastern Republic of Guinea, with the description of a new Amnirana species (Amphibia: Anura: Ranidae). Tropical Zoology 17, 201-232.

Rödel MO, Branch WR. 2002. Herpetological survey of the Haute Dodo and Cavally forests, western Ivory Coast, Part I: Amphibians. Salamandra 38, 245-268.

Rödel MO, Ernst R. 2004. Measuring and monitoring amphibian diversity in tropical forests. I. An evaluation of methods with recommendations for standardization. Ecotropica 10, 1-14.

Rödel MO. 2000. Herpetofauna of West Africa 1. Amphibians of the West African savanna. Series: Edition Chimaira, Frankfurt am Main, Germany 332 p.

Schiøtz A. 1963. The amphibians of Nigeria. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening 125, 1-92.

Schiøtz A. 1999. Treefrogs of Africa. Frankfurt/M. Edition Chimaira 350 p.

Skinner J, Niasse M, Haas L. 2009. Partage des bénéfices issus des grands barrages en Afrique de l’Ouest. Série Ressources Naturelles n° 9, Londres, Royaume-Uni, 78 p.

Skoroby VM, Mahaman BS, Koffi FK, Djagoua EV, Kouadio A, Biemi J. 2013. Variabilité Spatio-temporelle des paramètres climatiques et son incidence sur le tarissement dans les bassins versant de Bô et Débo (département de Soubré au Sud-ouest de la Côte d’Ivoire). International journal of innovation and Applied Studies 2, 287-299.

Zimmerman BL. 1994. Audio strip transects. In: Heyer, W.R., Donnelly, M.A., McDiarmid, RW, Hayek L-AC, Froster MS. (Eds.): Measuring and monitoring biological diversity. Standard methods for amphibians. Smithsonian Institution Press, Washington and London: 92-97.