Showing posts with label IJB. Show all posts
Showing posts with label IJB. Show all posts

May 23, 2023

Anopheles stephensi: The emerging vector of malaria in the Republic of Djibouti, Horn of Africa | IJB 2023

Anopheles stephensi: The emerging vector of malaria in the Republic of Djibouti, Horn of Africa
Larval collections from A. stephensi breeding sites.

In this study we identified A. stephensi and A. gambiae SL. as the two major malaria vectors in the Republic of Djibouti. A. stephensi mosquitoes was present in all the 6 regions investigated suggesting that this species has become established in the country after its first detection in only Djibouti-ville in 2013. A. nili somalicus, A. dthali and A. azaniae were the secondary malaria vectors collected across the South-North transect. Insecticide resistance testing of the A. stephensi populations from Djibouti showed phenotypic resistance to organochlorine, pyrethroids, organophosphates and carbamates revealing the urgency to develop and implement a programme for monitoring and managing insecticide resistance in local vector populations with efficient control strategies at country level.

Author Name

Renaud Govoetchan*, Mohamed Mousse Ibrahim, Arthur Sovi, Houssein Mouhamed Omar, Abdillahi Omar Boulhan, and Houssein Youssouf Darar

Journal Name

International Journal of Biosciences | IJB |

Publisher Name

International Network For Natural Sciences | INNSpub

Abstract

The present study investigated mosquito species composition and phenotypic insecticide resistance profile to support decision-making in vector control in the Republic of Djibouti at the Horn of Africa. Adult mosquitoes were collected between December 2016 and December 2017 across 20 sentinel sites established in the 6 regions of the country using both Centers for Disease Control (CDC) miniature light traps and pyrethrum spray catches (PSC). Female mosquitoes were kept aside, for morphological identification to species by an expert entomologist using appropriate taxonomic keys by Gillies & Coetzee and Glick. Bioassays were also conducted in An. stephensi from Djibouti-ville against nine insecticides used in public health. A total number of 12,538 host-seeking mosquitoes belonging to four genera (Anopheles, Culex, Aedes, Uranotaenia) comprising 12 species were collected. Among these, A. gambiae S.L. and A. stephensi were the two major malaria vectors identified while secondary malaria vectors such as A. nili somalicus, A. dthali and A. azaniae were also collected. Culex quinquefasciatus was the most abundant mosquito species in the 6 regions. WHO susceptibility tests performed on A. stephensi population from Djibouti-ville showed resistance to pyrethroids, organophosphates, carbamates and DDT. The resistance intensity bioassays indicated low to moderate intensity of resistance with pyrethroid insecticides and the organophosphate pirimiphos methyl. Meanwhile pre-exposure to PBO suggested involvement of P450 detoxification enzymes in pyrethroid resistance. These findings revealed the urgent need to develop and implement a programme for monitoring and managing insecticide resistance in local vector populations with efficient control strategies in Djibouti.

Anopheles stephensi: The emerging vector of malaria in the Republic of Djibouti, Horn of Africa
Larval collections from sites

Introduction

Located in the Horn of Africa, the Republic of Djibouti shares borders with Eritrea, Ethiopia and Somalia and has just over 300 km of coastline along the Red Sea and Gulf of Aden (Hatem, 1996). With an area of 23,200km² consisting mainly of plateau, plains and highlands, the Republic of Djibouti has a hot and humid climate, with a temperature that varies between 30°C in January and 43°C in July with an average humidity of 69% (Schulman, 2019). Rainfall is rare (<130mm annually), however unusual rains may occur across the country causing heavy rainfall and flooding in residential areas of the capital Djibouti-ville (Schulman, 2019).

In the Republic of Djibouti, mosquito-borne diseases are primarily transmitted by malaria vectors and secondarily dengue fever vectors, followed by other diseases with suspected cases such as West Nile virus and Leishmaniasis (Faulde et al., 2012; Rodier, 1995). While the Horn of Africa is known to be highly susceptible to mosquito-borne diseases, the Republic of Djibouti was historically thought to be a malaria meso to hypo-endemic country with intermittent epidemics (Rodier, 1995). However local populations have experienced only low and unstable malaria transmission and intermittent epidemics (Fox et al., 1991; Fox et al., 1989) with most of cases detected in people returning from neighbouring countries (Khaireh et al., 2013; Crowell et al., 2012).


The first case of malaria was reported at the very beginning of the 20th century, but it was not common until 1984 that malaria became a public health problem after a significant number of imported malaria cases were recorded. Since then, malaria cases have continued to increase, most importantly in Djibouti-ville. From 1988, there was an increase in malaria cases throughout the country, even in the regions of Tadjourah and Obock that were not affected in the past. In order to address the progression of the disease, the country implemented its first vector control programs based initially on larval control (Louis, 1988; Carteron et al., 1979) strengthened later with the introduction of insecticide-treated bed nets.

Unfortunately, investments and control efforts did not commensurate with the risks of disease, and major malaria outbreaks were reported. In 1991, a record of 7,338 microscopically confirmed malaria cases declining to 4,770 cases in 1993 (Rodier, 1995). 

Contrastingly, an unusual increase of malaria cases was reported in 1999 in and around Djibouti-ville due to the emergence of chloroquine resistance (Rogier et al., 2011). The cases detected were mainly caused by Plasmodium falciparum but also P. vivax which was responsible of 3% of malaria burden (UNDP, 2013). The last uncommon urban outbreak of malaria was observed in 2013 with 1228 reported cases of which 83% were from Djibouti-ville alone (UNDP, 2013). 

The entomological surveillance in Republic of Djibouti was not a routine exercise and as such the monitoring programme at country level is very poor. Most of the existing data were generated as part of the international European Union Naval Force Somalia mission “Atalanta” (Faulde et al., 2012; Faulde & Ahmed, 2010) by the country's military partners that have troops based at various locations throughout the territory. The local malaria transmission was attributed to Anopheles arabiensis in all the 6 regions of the country (WHO, 2012). 

However, a larval survey has reported the presence of A. nili in Ali Sabieh, southern region of Djibouti. More recently, A. stephensi, the Asian malaria mosquito vector of Plasmodium falciparum and P. vivax was incriminated in the outbreak which occurred in 2013 (Faulde et al., 2014). 

The current study updates malaria entomological data mandatory for decision making on control strategies implementation. The data was generated over a recent entomological surveillance conducted between December 2016 and December 2017, in 20 sentinel sites located along the south-north transect of Djibouti Republic. Mosquito species compositions, as well as insecticide resistance status of the main malaria vector identified in the Djibouti-ville were assessed to support decision-making for the implementation of an efficient control program. Check out more Anopheles stephensi: The emerging vector of malaria in the Republic of Djibouti, Horn of Africa

Submit your research paper to the journal of biosciences

Reference

Ahmed A. 2021. Invasive Malaria Vector Anopheles stephensi Mosquitoes in Sudan, 2016-2018. Emerg Infect Dis 27(11), 2952-2954.

Ali S. 2022. Morphological identification and genetic characterization of Anopheles stephensi in Somaliland. Parasit Vectors 15(1), 247.

Carteron B, Morvan D, Rodhain F. 1979. The control of culicidae in Djibouti town. An experience of 7 years (Author’s transl)]. Med Trop 39(5), 555-8.

Corbel V, Chabi J, Dabiré RK, Etang J, Nwane P, Pigeon O, Hougard JM. 2010. Field efficacy of a new mosaic long-lasting mosquito net (PermaNet® 3.0) against pyrethroid-resistant malaria vectors: A multi centre study in Western and Central Africa. Malaria Journal 9(1), 1-12.

Crowell VHD, Briët O, Chitnis N, Maire N, Smith T. 2012. Can we depend on case management to prevent re-establishment of P. falciparum malaria, after local interruption of transmission. Epidemics 4, 1-8.

de Santi VP. 2021. Role of Anopheles stephensi Mosquitoes in Malaria Outbreak, Djibouti, 2019. Emerg Infect Dis 27(6), 1697-1700.

Enayati A. 2020. Evolution of insecticide resistance and its mechanisms in Anopheles stephensi in the WHO Eastern Mediterranean Region. Malar J 19(1), 258.

Faulde MK, Rueda LM, Khaireh BA. 2014. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa. Acta Trop 139, 39-43.

Faulde MK, Spiesberger M, Abbas B. 2012. Sentinel-site-enhanced near-real time surveillance documenting West Nile virus circulation in two Culex mosquito species indicating different transmission characteristics, Djibouti City, Djibouti. J. Egypt. Soc. Parasitol 42, 281-294.

Faulde MK, Ahmed AA. 2010. Haematophageous vector monitoring in Djibouti city from 2008 to 2009: first records of Culex pipiens ssp. torridus (IGLISCH), and Anopheles sergentii (Theobald). J Egypt Soc Parasitol, 40(2), 281-94.

Fox E, Abbate EA, Leef M, Mikhail E, Said-Salah Y, Hassan A. 1989. Malaria in the Djibouti Republic: Results of a serologic survey in Ambouli. Med. Trop 51, 185-189.

Fox E, Bouloumie J, Olson JG, Tible D, Lluberas M, Shakib SO, Parra JP, Rodier G. 1991. Plasmodium falciparum voyage en train d’Éthiopie à Djibouti. Med. Trop 51, 185-189.

Ghosh SK. 2020. Anopheles (Cellia) stephensi Liston 1901: the vector of urban malaria- An imminent threat to malaria elimination in India. In: Vector Biology and Control, an update for malaria elimination initiative in India (Dev V, Editor), The National Academy of Sciences, India pp. 69-82.

Gorouhi MA. 2016. Current Susceptibility Status of Anopheles stephensi (Diptera: Culicidae) to Different Imagicides in a Malarious Area, Southeastern of Iran. J. Arthropod Borne Dis 10(4), 493-500.

Gillies MT, Coetzee M. 1987. A supplement to the Anophelinae of Africa South of the Sahara. Publ S Afr Inst Med Res 55, 1-143.

Glick JI. 1992. Illustrated key to the female Anopheles of southwestern Asia and Egypt (Diptera: Culicidae). Mosq Syst 24, 125-153.

Hatemmm. 1996. Health development in Djibouti. World Health Forum 17(4), 390-1.

Hemingway J, Ranson H. 2020. Insecticide resistance in insect vectors of human disease. Annual review of entomology 45(1), 371-391.

Khaireh BA. 2013. Population genetics analysis during the elimination process of Plasmodium falciparum in Djibouti. Malar J 12, 201.

Louis JP. 1988. Malaria in the Republic of Djibouti. Strategy for control using a biological antilarval campaign: Indigenous larvivorous fishes (Aphanius dispar) and bacterial toxins. Med Trop 48, 127-131.

Ngongang-Yipmo ES. 2022. Reduced performance of community bednets against pyrethroid-resistant Anopheles funestus and Anopheles gambiae, major malaria vectors in Cameroon. Parasit Vectors 15(1), 230.

Nkemngo FN. 2020. Multiple insecticide resistance and Plasmodium infection in the principal malaria vectors Anopheles funestus and Anopheles gambiae in a forested locality close to the Yaounde airport, Cameroon. Wellcome Open Res 5, 146.

Oliver SV, Lyons CL, Brooke BD. 2022. The effect of blood feeding on insecticide resistance intensity and adult longevity in the major malaria vector Anopheles funestus (Diptera: Culicidae). Sci Rep 12(1), 3877.

Pinda PG. 2020. Comparative assessment of insecticide resistance phenotypes in two major malaria vectors, Anopheles funestus and Anopheles arabiensis in south-eastern Tanzania. Malar J 19(1), 408.

Ranson H, Lissenden N. 2016. Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control. Trends in Parasitology 32(2), 187-196.

Rodier GR. 1995. Recurrence and emergence of infectious diseases in Djibouti city. Bull World Health Organ 73(6), 755-9.

Rogier C. 2005. Malaria epidemic and drug resistance, Djibouti. Emerg Infect Dis 11(2), 317-21.

Safi NH. 2017. Evidence of metabolic mechanisms playing a role in multiple insecticides resistance in Anopheles stephensi populations from Afghanistan. Malar J 16(1), 100.

Sanou A, Nelli L, Guelbéogo WM, Cissé F, Tapsoba M, Ouédraogo P, Ferguson HM. 2021. Insecticide resistance and behavioural adaptation as a response to long-lasting insecticidal net deployment in malaria vectors in the Cascades region of Burkina Faso. Scientific reports 11(1), 1-14.

Schulman S. 2019. Climate Change Challenges and Djibouti. The RUSI Journal 164(1), p. 62-75.

Seyfarth M. 2019. Five years following first detection of Anopheles stephensi (Diptera: Culicidae) in Djibouti, Horn of Africa: populations established malaria emerging. Parasitol Res 118(3), 725-732.

Simpson EH. 1949. Measurement of Diversity. Nature 163, 688-688.

Singh OPDC, Lather M, Agrawal OP, Adak T. 2011. Knockdown resistance (kdr)-like mutations in the voltage-gated sodium channel of a malaria vector Anopheles stephensi and PCR assays for their detection. Malar Journal 10(59).

Takken W, Lindsay S. 2019. Increased Threat of Urban Malaria from Anopheles stephensi Mosquitoes, Africa. Emerg Infect Dis 25(7), 1431-1433.

United Nations Developement Programme. 2013. Djibouti: Appel Global–Revue à mi-Parcours.

WHO. 2012. World malaria report 2011. 2012.

WHO. 2016. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes.

WHO. 2022. WHO initiative to stop the spread of Anopheles stephensi in Africa.

World Health Organization. 2012. Global plan for insecticide resistance management in malaria vectors. World Health Organization.

Yared S. 2020. Insecticide resistance in Anopheles stephensi in Somali Region, eastern Ethiopia. Malar J 19(1), 180.

December 12, 2022

Control of cassava mealybug Phenacoccus manihoti using NECO 50EC biopesticide | IJB 2022

Control of cassava mealybug Phenacoccus manihoti (Homoptera: Pseudococcidae) using NECO 50EC biopesticide in Grand Lahou (Côte d’Ivoire)  Yéboué N’guessan Lucie, Tano Djè Kevin Christian, Tra Bi Crolaud Sylvain, Senan Soro, Yao Tano Key Words: BiopesticideCassavaCôte d’IvoireNECO 50 ECPhenacoccus manihoti

Author

Yéboué N’guessan Lucie  
Improvement and Agricultural Production Laboratory, UFR Agroforestry, Jean Lorougnon Guédé University, BP 150 Daloa, Côte d’Ivoire    
 
Tano Djè Kevin Christian 
Improvement and Agricultural Production Laboratory, UFR Agroforestry, Jean Lorougnon Guédé University, BP 150 Daloa, Côte d’Ivoire 
 
Tra Bi Crolaud Sylvain  
Improvement and Agricultural Production Laboratory, UFR Agroforestry, Jean Lorougnon Guédé University, BP 150 Daloa, Côte d’Ivoire 
 
Senan Soro
Switzerland Center for Scientific Research, 01 BP 1303 Abidjan 01, Abidjan-Côte d’Ivoire

Yao Tano
Plant Protection Laboratory, UFR Science of Nature, Nangui Abrogoua University, 02 BP 801
Abidjan 02, Côte d’Ivoire

 Journal Name

International Journal of Biosciences | IJB

 Publisher Name

International Network For Natural Sciences | INNSpub

 Abstract

Cassava (Manihot esculenta Crantz) is a food crop with tuberous roots that plays an important role in feeding populations. The need to control cassava pests led to testing the effect of the biopesticide NECO 50 EC on Phenacoccus manihoti in a plot of the city of Grand-Lahou. The effectiveness of the biopesticide NECO 50 EC was tested on larvae and adults of P. manihoti, in comparison with a conventional insecticide K-OPTIMAL 35 EC. Dilutions gave 5 respective concentrations of NECO 50 EC: 8.33 g/l; 4.54g/l; 3.12g/l; 2.38 g/l and 1.92 g/l, and a concentration of 0.093 g/l for the control insecticide. Spraying of cassava plants infested with mealybugs was undertaken and observations were made 24 hours, 48 hours and 72 hours after treatment. On the larvae, the highest rate (92.07 ± 0%) is obtained at a concentration of 8.33 g/l for NECO and 98.51% for the control insecticide. In adults for NECO the highest rate (62.50 ± 0%) is obtained at the concentration of 8.33 g/l and 96.17% for the control insecticide. The biopesticide NECO 50 EC could be used as an alternative to the excessive use of synthetic insecticides to reduce the damage of the pest P. manihoti. Check out more by folllowing the link Control of cassava mealybug Phenacoccus manihoti (Homoptera: Pseudococcidae) using NECO 50EC biopesticide in Grand Lahou (Côte d’Ivoire)


 Cassava (Manihot esculenta Crantz) is a food crop with tuberous roots that plays an important role in feeding populations. The need to control cassava pests led to testing the effect of the biopesticide NECO 50 EC on Phenacoccus manihoti in a plot of the city of Grand-Lahou. The effectiveness of the biopesticide NECO 50 EC was tested on larvae and adults of P. manihoti, in comparison with a conventional insecticide K-OPTIMAL 35 EC. Dilutions gave 5 respective concentrations of NECO 50 EC: 8.33 g/l; 4.54g/l; 3.12g/l; 2.38 g/l and 1.92 g/l, and a concentration of 0.093 g/l for the control insecticide. Spraying of cassava plants infested with mealybugs was undertaken and observations were made 24 hours, 48 hours and 72 hours after treatment. On the larvae, the highest rate (92.07 ± 0%) is obtained at a concentration of 8.33 g/l for NECO and 98.51% for the control insecticide. In adults for NECO the highest rate (62.50 ± 0%) is obtained at the concentration of 8.33 g/l and 96.17% for the control insecticide. The biopesticide NECO 50 EC could be used as an alternative to the excessive use of synthetic insecticides to reduce the damage of the pest P. manihoti.

Reference

Abbott WS. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265- 267. http://dx.doi.org/10.1093/jee/18.2.265a

Akpingny KL, Koulou N. 2017. Fiche technicoéconomique du manioc. Agence National d’Appui au Développement Rural (ANADER), p 8.

Begon M, Harper LJ, Townsend CR. 1990. Ecology: individual population and communities. Boston, 2nd Edition Oxford: Blackwell Scientific Publications, p 945.

Braima J, Yannick J, Neuenschwander P, Cudjoe A, Modder W, Echendu N, Toko M. 2000. Lutte contre les ravageurs du manioc. International Institute of Tropical Agriculture (IITA), Cotonou, Benin, p 38.

Calatayud PA, Le Ru B. 1997. La lutte contre la cochenille du manioc en Afrique. Cahiers de la Recherche Développement 43, 59-66.

Cloyd R, Chiasson H. 2007. Activity of an essential oil derived from Chenopodium ambrosioides on Greenhouse Insect Pests. Journal of Economic Entomology 100, 459-466. https://doi.org/10.1093/jee/100.2.459

Enete AA. 2009. Middlemen and smallholder farmers in cassava marketing in Africa. Tropicultura 27(1), 40-44. http://www.tropicultura.org/text/v27n1/40.pdf

Enete AA, Igbokwe EM. 2009. Cassava market participation decisions of producing households in Africa. Tropicultura 27(3), 129-136. http://www.tropicultura.org/text/v27n3/129.pdf

FAOSTAT. 2017. Crop Production in 2014: Cassava Data [Internet]. Available from. http://faostat3.fao.org

FAO. 2014. FAOSTAT (Données de l’alimentation et de l’agriculture). http://www.fao.org/faostat/fr/#compare.

FAO. 1996. Annuaire production: 1995. Rome, Italie, FAO, p 235.

Finney DJ. 1971. Probit analysis. 3rd. Edition, Cambridge University Press, p 33. https://doi.org/10.1002/bimj.19720140111

Gonzalez CA, Reina M, Diaz CE, Fraga, BM, Santana-Meridas O. 2013. Natural Product-Based Biopesticides for Insect Control. In: Reedijk, J., Ed. Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Waltham, MA, Elsevier. 01-Nov-13. http://dx.doi.org/10.1016/B978-0-12-409547-2.02770-0

Gueye MT, Seck D, Wathelet JP, Lognay G. 2011. Lutte contre les ravageurs des stocks de céréales et de légumineuses au Sénégal et en Afrique occidentale: synthèse bibliographique. Biotechnology, Agronomy and Society and Environment 15(10), 183-194. https://popups.uliege.be/1780-4507/index.php?id=17030&file=1&pid=7108

Hénault-Ethier L. 2015. Health and environmental impacts of pyrethroid insecticides: What we know, what we don’t know and what we should do about it. Executive summary and Scientific Literature Review, Equiterre, Montréal, Canada, p 68. https://legacy.equiterre.org/sites/fichiers/health_and_environmental_impacts_of_pyrethroid_insecticides_full_report_en.pdf

Herren HR. 1987. Africa-wide Biological Control Project of Cassava Pests. In: Symposium XI: Africa-wide Biological Control Programme of Cassava Pests. December 1987, p 837-840. International Journal of Tropical Insect Science , Volume 8 , Issue 4-5-6: Recent Advances in Research on Tropical Entomology ,  https://doi.org/10.1017/S174275840002302X

Howeler R, Lutaladio N, Thomas G. 2013. Save and Grow: Cassava. A guide to sustainable production intensification. FAO, Rome (Italy). Plant Production and Protection Div, p 129.

INS. 2015. RGPH 2015_Répetoire des localités: Carte du département de grand-lahou, p 15-16.

Isman MB. 1997. Neem insecticides. Pesticide Outlook 8(5), 32-38.

Johnson F, Ouosso KR, Kanko C, Tonzibo ZF, Foua-bi K, Tano Y. 2018. Bioefficacité des huiles essentielles de trois espèces végétales (Ocimum gratissimum, Ocimum canum) et (Hyptis suaveolens), de la famille des Labiées dans la lutte contre Sitophilus zeamais. European Journal of sciences Research 150(3), 273-284. https://www.europeanjournalofscientificresearch.com/issues/PDF/EJSR_150_3_03.pdf

Johnson F, Seri-Kouassi B, Aboua LRN, Foua-Bi K. 2006. Utilisation de poudres et d’extraits totaux issus de plantes locales des genres Ocimum sp. et Mentha sp. comme biopesticides dans la lutte contre Callosobruchus maculatus Fab. Agronomie Africaine 18(3), 221-233. http://dx.doi.org/10.4314/aga.v18i3.1694

Kassi FM, Badou OJ, Tonzibo ZF, Salah Z, Amari LDGE, Koné D. 2014. Action du fongicide naturel NECO contre la cercosporiose noire (Mycosphaerella fijiensis Morelet) chez le bananier plantain (AAB) en Côte d’Ivoire. Journal of Applied Biosciences 75, 6183-6191. http://dx.doi.org/10.4314/jab.v75i1.3

Kadri A, Zakari Moussa O, Yacouba SA, Abdou HKK. Karimoune L. 2013. Gestion intégrée de Maruca vitrata (Fabricius, 1787) et Megalurothrips sjostedti (Trybom, 1908), deux ravageurs majeurs du niébé au Niger. International Journal of Biological and Chemical Sciences 7(6), 2549- 2557. http://dx.doi.org/10.4314/ijbcs.v7i6.29

Konan KS, Kouassi KL, Kouamé KI, Kouassi AM, Gnakri D. 2013. Hydrologie et hydrochimie des eaux dans la zone de construction du chenal du port de pêche de Grand-Lahou, Côte d’Ivoire. International Journal of Biological and Chemical Sciences 7(2), 819-831. http://dx.doi.org/10.4314/ijbcs.v7i2.37

Kouninki H, Haubruge E, Noudjou FE, Lognay G, Malaise F, Ngassoum MB, Goudoum A, Mapongmetsem PM, Ngamo LS, Hance T. 2005. Potentiel use of essential oils from Cameroon applied as fumigant or contact insecticides against Sitophilus zeamais Motsch. (Coleoptera: Curculionidae). Communications in Agricultural and Applied Biological Sciences 70(40), 787-792. https://www.ajfand.net/Volume7/No5/Kouninki2145.pdf

Mabrouk A, El-Sharkawy MA. 1993. Drought-tolerant Cassava for Africa, Asia, and Latin America: Breeding projects work to stabilize productivity without increasing pressures on limited natural resources 43(7), 441-451. https://doi.org/10.2307/1311903

Matile-Fererro D. 1976. Les cochenilles nuisibles au manioc en République Populaire du Congo. Rapport de mission : Muséum d’histoire naturelle (Paris, France), p 30.

Monfankye R. 2014. The management of field pests on Cowpea (Vigna unguiculata (L.) Walp) using botanicals [tobacco (Nicotiana tabacum) leaves, neem (Azadirachta indica) leaves, ginger (Zingiber officinale) rhizomes and onion (Allium cepa) bulbs]. Master of Science (Environmental Science), Kwame Nkrumah University of Science and Technology, Ghana, p 85.

N’zué B, Zohouri GP, Djédji C, Tahouo O. 2013. Bien cultiver le manioc en Côte-d’Ivoire. Direction de la recherche scientifique et de l’appui au développement – Direction des innovations et des systèmes d’information du CNRA (Centre National de Recherche Agronomique), Abidjan (Côte d’Ivoire), p 4.

Ossey CL, Aboua LRN, Tano DKC, Assi ANM, Obodji A. 2018. Effet insecticide, anti-appétant et répulsif des extraits aqueux de quatre plantes locales sur les adultes de O. mutabilis Sahlberg (Coleoptera: Chrysomelidae) au sud de la Côte d’Ivoire. Afrique SCIENCE 1(5), 50-64. http://www.afriquescience.net/PDF/14/5/5.pdf

Ouédraogo I, Sawadogo A, Nebié RCH, Dakouo D. 2016. Evaluation de la toxicité des huiles essentielles de Cymbopogon nardus (L) et Ocimum gratissimum (L) contre Sitophilus zeamais Motsch et Rhyzopertha dominica F, les principaux insectes nuisibles au maïs en stockage au Burkina Faso. International Journal Biological and Chemical Sciences 10(2), 695-705. http://dx.doi.org/10.4314/ijbcs.v10i2.20

Priestley CM, Williamson EM, Wafford KA, Sattelle DB. 2003. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. British Journal of Pharmacology 140, 1363-1372. https://doi.org/10.1038/sj.bjp.0705542

Silvestre P, Arraudeau M. 1983. Le manioc. Maisonneuve et Larose Paris, France /ACCT, Coll. « Techniques agricoles et Productions tropicales », 32 p 262.

Tano DKC, Aboua LRN, Séri-Kouassi BPh, Koua KH. 2012. Evaluation of the insecticidal activity of aqueous extracts of five plants on Coelaenomenodera lameensis Berti and Mariau (Coleoptera: Chrysomelidae) pest of oil palm (Elaeis guineensis Jacq.). International Journal of AgriScience 2(2), 120-135.

Tano DKC, Tra Bi CS, Kouassi KA. Ossey CL, Soro S. 2019. Incidences des attaques de Podagrica decolorata Duvivier 1892 (Coleoptera: Chrysomelidae) sur la culture du gombo et contrôle de ces adultes au moyen du biopesticide NECO 50 EC (Daloa, Côte d’Ivoire). Journal of Applied BioSciences 143, 14692-14700. https://dx.doi.org/10.4314/jab.v143i1.7

Tata-Hangy K. 1995. La lutte contre la cochenille du manioc Phenacoccus manihoti MATILE-FERRERO et l’acarien vert Mononychellus tanajoa BONDAR au Zaïre : Bilan des recherches 13(2), 43-49.

Tounou Ak, Agboka K, Bakouma Be, Aadom M, Adjevi Akm, Sanda K. 2018. Etude comparée de l’efficacité de la cyperméthrine et deux bioinsecticides, Beauveria bassiana et suneem contre l’altise du gombo, Podagrica spp (Coleoptera: Chrysomelidae). Journal Biological and Chemical Sciences 12(1), 491-500. https://dx.doi.org/10.4314/ijbcs.v12i1.38

Silvestre P, Arraudeau M. 1983. Le manioc. Paris, Maisonneuve et Larose/ACCT, Coll. «Techniques agricoles et Productions tropicales» 32, p 262. https://www.cabi.org/gara/mobile/FullTextPDF/Pre2000/19830750680.pdf

April 19, 2022

IJB Journals By INNSPUB | Journal Archive - April Issue 2022


April Issue 2022

Journal Name: International Journal of Biosciences | IJB

Content of the Issue

Proximate composition of some commercially available fish and poultry feeds sold in the market of Bangladesh

By: Md. Sabbir Hasan, Mahci Al Bashera, Farhana Jahan, Amin Hossain, Md. Waliullah, Md. Badrul Islam

Int. J. Biosci. 20(4), 1-8.

DOI: dx.doi.org/10.12692/ijb/20.4.1-8

Biological and phytochemical characterization of takermoust date syrup

By: Ymina Mimouni, Zahia Bayoussef , Oumelkheir Siboukeur

Int. J. Biosci. 20(4), 9-17.

DOI: dx.doi.org/10.12692/ijb/20.4.9-17

Efficacy of superabsorbent polymer on the stress condition of cowpea (Vigna unguiculata L.)

By: Roje Marie A. Clemente

Int. J. Biosci. 20(4), 18-29.

DOI: dx.doi.org/10.12692/ijb/20.4.18-29

Identification of suitable integrated weed management approaches for effective weed control in dry direct-seeded basmati rice (Oryza sativa L.)

By: Amir Ehsan, Muhammad Ehsan Safdar, Amjad Ali

Int. J. Biosci. 20(4), 30-40.

DOI: dx.doi.org/10.12692/ijb/20.4.30-40

Effect of nettle manure on agronomic and biochemical parameters of green bean (Phaseolus vulgaris L.)

By: Lila Abidi, Nadia Tirchi, Adel Kadri

Int. J. Biosci. 20(4), 41-49.

DOI: dx.doi.org/10.12692/ijb/20.4.41-49

GC-MS based phytoconstituents profiling and phytochemical investigation of Annona muricata L.

By: H.S.Tambe, A.M. Bhosale, R.D. Borse, P.M. Dighe, S.L. Kakad

Int. J. Biosci. 20(4), 50-58.

DOI: dx.doi.org/10.12692/ijb/20.4.50-58

Evaluation of lowland rice (Oryza spp.) varieties for tolerance to flooding in freshwater and estuarine agro ecosystems in Delta State

By: E.U. Uwuigbe, S.O. Akparobi, F.O. Oroka

Int. J. Biosci. 20(4), 70-84.

DOI: dx.doi.org/10.12692/ijb/20.4.70-84

Nutrient uptake and yield of paddy cultivated under intensification with fish amino acid as liquid organic fertilizer

By: Riza Adrianoor Saputra, Nukhak Nufita Sari, Ririn Norsaleha

Int. J. Biosci. 20(4), 85-96.

DOI: dx.doi.org/10.12692/ijb/20.4.85-96

Antioxidant potential of the ethanol, ethyl acetate, and petroleum ether extracts of Kyllinga nemoralis

By: Aileen May G. Ang, Irish E. Uyangurin

Int. J. Biosci. 20(4), 59-69.

DOI: dx.doi.org/10.12692/ijb/20.4.59-69

Serum lipid stabilising effect of sarabat (Diplazium asperum Blume) aqueous extract in diet-induced hyperlipidemic wistar albino rats

By: Pablo M. Afidchao Jr., Michael B. Ples

Int. J. Biosci. 20(4), 97-105.

DOI: dx.doi.org/10.12692/ijb/20.4.97-105

Get the full issue by following the link Archive for | IJB |- April 2022

 Call for Papers 2022 | INNSPUB Journals

INNSPUB Journals invites all respected researchers to submit their research papers, review papers, short communication, etc. in the different fields of Natural Sciences and Life Sciences including Biology, Biodiversity, Environmental Science, Agronomy, Agricultural Research, Ecology, Zoology, Botany, Mineralogy, Oceanology, Oceanography, Hydrology, Plant Sciences, Animal Sciences, Fisheries, Genetics, Biochemistry, Plant Physiology, Biotechnology, Molecular Biology, Microbiology, Pathology, Cell Biology, Aquatic Biology, and Agricultural Sciences.